Klamath Basin Monitoring Program: Concepts for Consideration

Michael L. Deas

Watercourse Engineering, Inc.

Acknowledgements

- NCRWQCB
- USFWS
- Others
 - Karuk Tribe
 - Yurok Tribe
 - USFS
 - USGS
 - DFG

- Klamath Tribe
- PacifiCorp
- USBR
- ODEQ
- ALL the other folks too

Water Quality Monitoring and Ecosystem Characterization

- <u>Water Quality Monitoring Programs</u> are the primary methods of characterizing <u>Aquatic Ecosystems</u>
- Information is used
 - As a basis for scientific analysis
 - To monitor short- and long-term trends and
 - To provide information for management decisions
 - To assess management actions and provide basis for adaptive management

Water Quality Monitoring: Value

- Critical water quality data is generally
 <u>expensive</u> to collect, process, and maintain
 (even before it is used in analyses)
- However, we cannot truly manage our aquatic resources in today's water resources climate without this data (e.g., regulatory criteria, restoration).

Water Quality Data Categories

- Consider five general categories of water quality data based on sampling methods
 - Water temperature: remote logging thermistor
 - Physical characteristics: water quality probe
 - Physical and chemical: grab samples
 - Biological: grab/discrete samples
 - Other: grab/discrete samples (pesticides/herbicides, trace elements)
- These data provide unparalleled description of the aquatic system.

[This does not include the supporting data necessary in many analysis, e.g., geomorphology, hydrology, meteorology, biology, land use, geohydrology...]

Monitoring/Data Attributes

• Attributes:

	Easy,	low H	ard/high
 Relatively ease 	1	to	5
 Instrument Expense 	1	to	5
 Device/method failure 	1	to	5
- Frequency:	Sub-daily (1)	daily (3)	>daily (5)
 Data management costs (0) 	QA) 1	to	5
Field costs	1	to	5

Physical: Temperature Loggers

- <u>Methodology</u>: remote logging thermistor for water temperature
- Attributes:

 Relatively ease 	1
Instrument/method Expense	1
Device/method failure	1
Frequency	Sub-daily (1)
 Data management costs (QA) 	1
Field costs	<u>1</u>
	$\Sigma = 6$

• Notes: water temperature is one of the most valuable data sets

Physical: Water Quality Probes

• <u>Methodology</u>: single or multi-parameter water quality probes (logging capability) for temperature, dissolved oxygen, conductance, pH, turbidity, redox

• Attributes:

 Relatively ease 	2
 Instrument/method expense 	3
 Device/method failure 	2
Frequency	Sub-daily(1)
 Data management costs (QA) 	2
Field costs	<u>3</u>
	$\overline{\Sigma} = 13$

• Notes: sub-daily physical data are high value data sets

Physical and Chemical: Analytical Methods

• <u>Methodology</u>: field collection via grabs/discrete samples and laboratory analysis (nutrients, BOD, major ions, etc.)

• Attributes:

 Relatively ease 	4
Instrument/method expense	4
 Device/method failure 	3
Frequency	daily, >daily (4)
 Data management costs (QA) 	4
Field costs	4

Biological: Analytical Methods

• <u>Methodology</u>: field collection via grabs/discrete samples and laboratory analysis (algae, macroinvertebrates, etc.)

• Attributes:

 Relatively ease 	4
Instrument/method expense	4
Device/method failure	3
Frequency	daily, >daily (4)
 Data management costs (QA) 	4
Field costs	<u>4</u>
	T

Cost vs. Implementation Effort

IMPLEMENTATION EFFORT

Framework Concepts*

- Scope
- Data...some definitions
- Sampling Programs
- Sampling Considerations
- Overall basin objective
- Sub-objectives
- Quality Assurance
- Resources

Scope

- Klamath Basin
 - Williamson and Sprague River
 - Upper Klamath Lake
 - Klamath River below Upper Klamath Lake
- Cannot ignore upstream reaches, role of tributaries

Data...Examples

Baseline data

- General system characteristics (intra and inter-annual)
- Long-term response (trends, response to management)
- Frequency: monthly to quarterly

2. Seasonal data

- Asking more detailed questions, built upon baseline data
- Frequency: daily to monthly

3. Specific studies

- Asking specific questions based on 2, and 3.
- Frequency: sub-daily to daily/weekly
- May relate multiple data types to answer questions

4. Other

Sampling Programs

- Baseline/Seasonal
 - Thermistor network (mainstem, Scott, Salmon)
 - Data sonde network (mainstem)
 - Grab sample (mainstem)
 - SWAMP

Sampling Programs

• Detailed:

- Pulse flow
- Iron Gate turnover
- Phytoplankton and microcystin studies
- Ceratomixis shasta
- Periphyton
- Ammonia
- Trinity River Lewiston Dam Releases
- Estuary

Sampling Considerations

- Spatial
 - Where should monitoring occur?
 - Is there a need for multiple sampling at a particular site (e.g., multiple depths in reservoirs)?
- Temporal
 - When should monitoring occur?
 - At what frequency should monitoring occur?
 - Discrete data?
 - Time Series data?

Basin-wide Objective

- Goal: identify an objective that all water quality monitoring programs fall under
- Retain flexibility to incorporate "special" studies, adapt to new information
- Specific example of basin-wide objective:
 - "Collect water quality data to form required baseline data and detailed studies to support aquatic resources management."

Sub-Objectives

- Require a specific objective for all programs
- Tie smaller, more specific studies to <u>basin-wide</u> objective
- Do not try to do too much: avoid "add-ons" and "dilution" of studies

Quality Assurance

- Quality Assurance Project Plan
- Standard Operating Procedure

• Do we need uniform QA/SOP? Do we need "minimum" QA/SOP? Do we need QA/SOP?

"Resources"

- Money
- Time
- Energy
 - That's it...

Possible Framework Concepts/Issues

- Complete a basin-wide status evaluation: what is being done where, by whom, when, and WHY?
- Prioritize data needs based on
 - Baseline
 - Seasonal (do we have/need baseline to support this?)
 - Detailed (do we have/need baseline/seasonal to support this?)
- Should (a) cost, (b) implementability, (c) uncertainty be considered in prioritizing monitoring?
- Should individual reaches be identified (but with a formal interface)?

Possible Steps

- 1. Systematic Inventory
- 2. Develop basin-wide objective
- 3. Assess baseline monitoring needs/gaps
- 4. Develop sub-basin objectives
- 5. Assess "detailed" studies
- 6. Identify available resources
- 7. Prioritize baseline and "detailed" studies

Temperature Example

- Objective: characterize year-round, sub-daily variation in river (including tributaries) and reservoirs
- Locations: generic
 - Above and/or below reservoirs and major tributaries
 - Reservoir profiles (spatial and temporal frequency?)
 - Do we have this covered? Who is in charge
- Period: Year-round
- Frequency: 1-hour maximum